

INFORMATION AND COMMUNICATION TECHNOLOGY

0417/03 October/November 2018

Paper 3 Practical Test B MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 8 printed pages.

© UCLES 2018

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

the specific content of the mark scheme or the generic level descriptors for the question the specific skills defined in the mark scheme or in the generic level descriptors for the question the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate

marks are awarded when candidates clearly demonstrate what they know and can do marks are not deducted for errors

marks are not deducted for omissions

answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Evidence 1

Evaluation of stylesheet

4 from:

2x border-color are BGR not RGB	1 mark
colours missing # to show it is a hex value	1 mark
vertical-align value is incorrect and should be middle	1 mark
Efficient css as table and td defined together	1 mark
Border could be compressed for efficiency to border: 4px solid	1 mark

The fait funat the term	÷ B ×	
table,td	<pre>{ background-color: #000000; border-width: 4px; border-style: solid; border-collapse: collapse; text-align: center; vertical-align: middle }</pre>	
table	<pre>{ border-color: #ff0000; margin-left: auto; margin-right: auto }</pre>	
td	{ border-color: #ff5733 }	
hl	<pre>{ color: #ffffff }</pre>	
/* A Candida	te ZZ999 9999 */	
	Stylesheettableborder-color: #ff00001tdborder-color: #ff57331table,tdvertical-align: middle1h1color: #fffffff1	
	comment /* candidate details */ at end of style sheet 1	

Evidence 2

Evidence 3

- 1 The cascading stylesheets are part of the **Presentation** layer in website development.
- 2 Hyperlinks are an action in a web page and they are part of the **Content/Structure** layer.
- 3 The text and images of a web page are added to a web page in the **Content/Structure** layer.
- 4 An action like 'hover over' or 'on click' would be found in the **Behaviour/Scripting** layer.

1

1

1

1

- 1. Presentation
- 2. Content or Structure
- 3. Content or Structure
- 4. Behaviour or Scripting

Evidence 4

Cambridge IGCSE – Mark Scheme **PUBLISHED**

A Candidate ZZ999 9999

	А	В	С	D	E	F	G	Н	I	J	К	L
1			Sł	neil	la's	S	teel	Sh	eds	5		
	C	· · · · ·										
5	Cost of steel per	COST factor										
	Square metre	Jacioi 26										
	91.34	2.0										
6	Style	Length	Width	Wall height	Apex height	Floor are a	Cubic capacity	Roof area	Surface area	Cost of materials	Sales price	
7	Apex	1.8	2.0	2.0	2.4	3.60	7.920	3.88	27.88	\$42.93	\$120.00	
8	Brecon	2.0	2.0	2.0	2.4	4.00	8.800	4.31	29.11	\$44.83	\$120.00	
9	Castlemaine	2.4	2.0	2.0	2.4	4.80	10.560	5.17	31.57	\$48.62	\$130.00	
10	Dove	2.0	2.4	2.0	2.7	4.80	11.280	5.56	34.44	\$53.03	\$140.00	
11	Eagle	2.4	2.4	2.0	2.7	5.76	13.536	6.67	37.15	\$57.21	\$150.00	
12	Falcon	2.8	2.4	2.0	2.7	6.72	15.792	7.78	39.86	\$61.38	\$160.00	
13	Graphite	3.0	2.0	2.0	2.4	6.00	13.200	6.46	35.26	\$54.30	\$150.00	
14	Hitone	3.0	2.4	2.0	2.7	7.20	16.920	8.34	41.22	\$63.47	\$170.00	Extra Large
15	Iceberg	2.0	2.8	2.0	3.1	5.60	14.280	7.12	40.60	\$62.53	\$170.00	
16	Jupiter	2.4	2.8	2.0	3.1	6.72	17.136	8.55	43.63	\$67.18	\$180.00	
17	Kenya	2.8	2.8	2.0	3.1	7.84	19.992	9.97	46.65	\$71.84	\$190.00	Extra Large
18	Lima	4.0	3.0	2.1	3.4	12.00	33.000	15.88	61.78	\$95.14	\$250.00	Extra Large
19	Mascot	1.8		1.8	2.2	3.60	7.200	3.88	25.56	\$39.36	\$110.00	

5 new rows inserted	1
Row 1	
Large sans-serif font 100% accurate	1
Cells A1–K1 merged and centre aligned	1
Grey background	1
Row 3	
Double height with text wrap	1
Rows 3 and 6	
Bold and italic font	1
Rows 2 and 5	
¹ / ₂ of row 6 height	1
v	

Formatting	
Columns BCDE 1dp	1
Columns FHI 2dp	1
Column G 3dp	1
Cell A4 and columns JK in \$ to 2dp	1
Sheet	
Single page and fully visible	1

0417/03

F	7 =B7*C7		1				G7 E7+D7 Inside b *F7 /2 (on e	rackets 1 1 1 ither element) 1	
			$\langle \rangle$	\backslash	A Can	didate ZZ999	9999 /		
								H7 2*	1
	А	В			E	F		B7*	1
						-		Brackets around two (indexed) brac	ı kets 1
						Ch	~ 1	C7/2	1
1					\backslash	SII	el a	Bracketed	1
		:		,				^2	1
<u> </u>	Cast of steel ner	Cost						+ F7_D7	1
3	sauare metre	factor						Bracketed and ^2	1
4	1.54	2.6					¦L		
	Ct. /-	· · · · · · · · · · · · · · · · · · ·	142	147-11 6 - 2 - 6 4	A		e	D = = f = == =	
6	хую	Length	wiath	wall neight	Apex neight	E Floor area	= CUDIC CADACITY	KOOF AFEA	
7	A	11.0	- -			*7			
7	Apex	1.8	2	2	2.4	=B7*C7	=(E7+D7)*F7/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2)	
7 8 0	Apex Brecon Castlemaine	1.8 2	2	2 2	2.4 2.4	=B7*C7 =B8*C8	=(E 7+D 7)*F7/2 =(E 8+D 8)*F8/2 =(E 9+D 9)*E9/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C8/2)^2+(E8-D8)^2)	
7 8 9	Apex Brecon Castlemaine	1.8 2 2.4	2 2 2	2 2 2 2	2.4 2.4 2.4	=B7*C7 =B8*C8 =B9*C9 -B10*C10	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*E10/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2)	
7 8 9 10	Apex Brecon Castlemaine Dove Fagle	1.8 2 2.4 2 2 4	2 2 2 2.4 2.4	2 2 2 2 2	2.4 2.4 2.4 2.7 2.7	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*E11/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2)	
7 8 9 10 11	Apex Brecon Castlemaine Dove Eagle Falcon	1.8 2 2.4 2 2.4 2.4 2.4 2.8	2 2 2.4 2.4 2.4 2.4	2 2 2 2 2 2 2	2.4 2.4 2.4 2.7 2.7 2.7	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12	=(E 7+D 7)*F7/2 =(E 8+D 8)*F8/2 =(E 9+D 9)*F9/2 =(E 10+D 10)*F10/2 =(E 11+D 11)*F11/2 =(E 12+D 12)*E12/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2)	
7 8 9 10 11 12 13	Apex Brecon Castlemaine Dove Eagle Falcon Graphite	1.8 2 2.4 2.4 2.4 2.8 3	2 2 2.4 2.4 2.4 2.4 2.4	2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.4 2.7 2.7 2.7 2.7 2.4	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2)	
7 8 9 10 11 12 13 14	Apex Brecon Castlemaine Dove Eagle Falcon Graphite Hitone	1.8 2 2.4 2 2.4 2.4 2.8 3 3	2 2 2.4 2.4 2.4 2.4 2.4 2.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.7 2.7 2.7 2.7 2.7 2.4 2.7	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13 =B14*C14	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2 =(E14+D14)*F14/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2) =2*B14*SQRT((C14/2)^2+(E14-D14)^2)	
7 8 9 10 11 12 13 14 15	Apex Brecon Castlemaine Dove Eagle Falcon Graphite Hitone Iceberg	1.8 2 2.4 2 2.4 2.8 3 3 2	2 2 2.4 2.4 2.4 2.4 2 2.4 2.4 2.4 2.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.7 2.7 2.7 2.7 2.7 2.4 2.7 3.1	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13 =B14*C14 =B15*C15	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2 =(E14+D14)*F14/2 =(E15+D15)*F15/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2) =2*B14*SQRT((C14/2)^2+(E14-D14)^2) =2*B15*SQRT((C15/2)^2+(E15-D15)^2)	
7 8 9 10 11 12 13 14 15 16	Apex Brecon Castlemaine Dove Eagle Falcon Graphite Hitone Iceberg Jupiter	1.8 2 2.4 2.4 2.4 2.8 3 3 2 2.4	2 2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.8 2.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.7 2.7 2.7 2.7 2.7 2.4 2.7 3.1 3.1	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13 =B14*C14 =B15*C15 =B16*C16	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2 =(E14+D14)*F14/2 =(E15+D15)*F15/2 =(E16+D16)*F16/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2) =2*B14*SQRT((C14/2)^2+(E14-D14)^2) =2*B15*SQRT((C15/2)^2+(E15-D15)^2) =2*B16*SQRT((C16/2)^2+(E16-D16)^2)	
7 8 9 10 11 12 13 14 15 16 17	Apex Brecon Castlemaine Dove Eagle Falcon Graphite Hitone Iceberg Jupiter Kenya	1.8 2 2.4 2.4 2.8 3 3 2 2.4 2.4 2.4 2.8	2 2 2.4 2.4 2.4 2.4 2.4 2.4 2.8 2.8 2.8 2.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.4 2.7 2.7 2.7 2.7 2.4 2.7 3.1 3.1 3.1	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13 =B14*C14 =B15*C15 =B16*C16 =B17*C17	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2 =(E14+D14)*F14/2 =(E15+D15)*F15/2 =(E16+D16)*F16/2 =(E17+D17)*F17/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2) =2*B14*SQRT((C14/2)^2+(E14-D14)^2) =2*B15*SQRT((C15/2)^2+(E15-D15)^2) =2*B16*SQRT((C16/2)^2+(E16-D16)^2) =2*B17*SQRT((C17/2)^2+(E17-D17)^2)	
7 8 9 10 11 12 13 14 15 16 17 18	Apex Brecon Castlemaine Dove Eagle Falcon Graphite Hitone Iceberg Jupiter Kenya Lima	1.8 2 2.4 2.4 2.8 3 3 2 2.4 2.8 4	2 2 2.4 2.4 2.4 2.4 2.4 2.4 2.8 2.8 2.8 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 2.4 2.7 2.7 2.7 2.7 2.4 2.7 3.1 3.1 3.1 3.1 3.4	=B7*C7 =B8*C8 =B9*C9 =B10*C10 =B11*C11 =B12*C12 =B13*C13 =B14*C14 =B15*C15 =B16*C16 =B17*C17 =B18*C18	=(E7+D7)*F7/2 =(E8+D8)*F8/2 =(E9+D9)*F9/2 =(E10+D10)*F10/2 =(E11+D11)*F11/2 =(E12+D12)*F12/2 =(E13+D13)*F13/2 =(E14+D14)*F14/2 =(E15+D15)*F15/2 =(E16+D16)*F16/2 =(E17+D17)*F17/2 =(E18+D18)*F18/2	=2*B7*SQRT((C7/2)^2+(E7-D7)^2) =2*B8*SQRT((C8/2)^2+(E8-D8)^2) =2*B9*SQRT((C9/2)^2+(E9-D9)^2) =2*B10*SQRT((C10/2)^2+(E10-D10)^2) =2*B11*SQRT((C11/2)^2+(E11-D11)^2) =2*B12*SQRT((C12/2)^2+(E12-D12)^2) =2*B13*SQRT((C13/2)^2+(E13-D13)^2) =2*B14*SQRT((C14/2)^2+(E13-D13)^2) =2*B15*SQRT((C15/2)^2+(E14-D14)^2) =2*B15*SQRT((C15/2)^2+(E15-D15)^2) =2*B16*SQRT((C16/2)^2+(E16-D16)^2) =2*B17*SQRT((C17/2)^2+(E17-D17)^2) =2*B18*SQRT((C18/2)^2+(E18-D18)^2)	

Cambridge IGCSE – Mark Scheme PUBLISHED

Replication

Formulae printout, landscape, fully visible Row and column headings visible

1

1